The 2015 AMMCS-CAIMS Congress Waterloo, Ontario, Canada June 7-12, 2015

The Numerical Solution of Reduced Differential Algebraic Equations

John Ernsthausen, Nedalko Nedialkov

McMaster University, Hamilton, Ontario, Canada, ernsthjm@mcmaster.ca

A reduced differential equation results from applying any reduction procedure to a differential equation. We do not follow the often applied dummy derivative with projection technique to numerically solve the reduced differential equation. Instead we investigate a geometric construction.

A Rabier and Rheinboldt reduced differential equation leads to a tangent vector field on the core manifold. We show the strangeness reduction of Kunkel and Mehrmann as well as the sigma method of Pryce also lead to a tangent vector field on the core manifold.

Modern approaches to numerically solve an ODE on a manifold (ODEM) include stabilization techniques to the invariant manifold and projection techniques. We construct and solve the local ODE to solve the ODEM applying Rheinboldt's algorithms to evaluate local parametrizations.

References

- Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifolds, Tensor Analysis, and Applications, *Applied Mathematical Sciences*, vol. 75, second edn. Springer-Verlag, New York (1988)
- [2] Ascher, U.M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67, 131-149 (1994)
- [3] Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solutions. Textbooks in Mathematics. European Mathematical Society, Zürich (2006)
- [4] Kunkel, P., Mehrmann, V., Stöver, R.: Multiple shooting for unstructured nonlinear differential-algebraic equations of arbitrary index. SIAM J. Numer. Anal. 42(6), 2277–2297 (2005)
- [5] Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 9(2), 213–231 (1988)
- [6] Pryce, J.D.: A simple structural analysis method for DAEs. BIT **41**(2), 364–394 (2001)
- [7] Pryce, J.D., Nedialkov, N.S., Tan, G.: DAESA-a matlab tool for structural analysis of differential-algebraic equations: Theory. ACM Trans. Math. Software (2014). To be submitted
- [8] Rabier, P.J., Rheinboldt, W.C.: A geometric treatment of implicit differential-algebraic equations. J. Diff. Eq. 109, 110–146 (1994)
- [9] Rabier, P.J., Rheinboldt, W.C.: Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, Philadelphia (2000)
- [10] Rabier, P.J., Rheinboldt, W.C.: Theoretical and numerical analysis of differential-algebraic equations. In: P.G. Ciarlet, J.L. Lions (eds.) Solution of Equations in Rⁿ (Part 4), Techniques of Scientific Computing (Part4), Handbook of Numerical Analysis, vol. 8, pp. 183–540. Elsevier, Amsterdam (2002)
- [11] Rheinboldt, W.C.: Core manifolds of daes (1994). Lecture Notes
- [12] Rheinboldt, W.C.: MANPAK: A set of algorithms for computations on implicitly defined manifolds. Computers Math. Applic. 32(12), 15–28 (1996)
- [13] Rheinboldt, W.C.: Solving algebraically explicit DAEs with the MANPAK-Manifold-Algorithms. Computers Math. Applic. **33**(3), 31–43 (1997)
- [14] Scholz, L., Steinbrecher, A.: A combined structural-algebraic approach for the regularization of coupled systems of daes (2013).
 Preprint 2013/30, Technische Universität Berlin, Berlin