Rigorous Defect Control and the Numerical Solution of ODEs

John Ernsthausen

McMaster University

johnernsthausen.com/cse-talk.pdf

The 2017 CSE Student Symposium April 7, 2017

Problem statement

Defect control literature

- Enright advocates asymptotic defect control Enright and Coworkers and Students (1989-2012)
- Defect control and ODE boundary value problem Enright and Muir, Shampine and Muir (1993-2004)
- Corless and Corliss proposed rigorous defect control Corless and Corliss (1991)

Numerical problem

Given TOL, approximate z on $[t_i, t_{i+1}]$ near x_i get defect

 $\Delta z(t) \stackrel{\text{\tiny def}}{=} z'(t) - f(t, z(t))$

Find stepsize so that *z* satisfies on $[t_i, t_{i+1}]$

$$z'(t) = f(t, z(t)) + \Delta z(t) \quad z(t_i) = x_i \quad \|\Delta z\|_{\infty} \le TOL$$

Then *z* exactly solves on $[t_0, t_f]$

$$z'(t) = f(t, z(t)) + \Delta z(t) \quad z(t_0) = x_0 \quad \|\Delta z\|_{\infty} \le TOL$$

How to do it?

- Construct approximate solution z
- Rigorously bound Δz on $[t_0, t_f]$
- Find good stepsize

Approximate solution

Numerical ODE solvers for the initial value problem

$$x'(t) = f(t, x(t)) \quad x(t_0) = x_0 \quad t \in [t_0, t_f]$$

- control local error on each step
- return skeletal solution (t_i, x_i)
- return a continuously differentiable approximation z to x

Taylor series method

The process

Computation often regarded as expensive

This is not the case

Computing defect inexpensive Compared to cost of Taylor series method itself

$$z(t) = \sum_{k=0}^{n} (z)_{k} (t - t_{i})^{k}$$
 where $(z)_{k} = \frac{1}{k} (f)_{k-1}$

Data management: ApproximateSolution class

Example

Automatic differentiation via operator overloading From *f* to its Computational Graph, a DAG Bendtsen and Stauning [FADBAD++, TADIFF] (1997)

- Idea: Taylor arithmetic
 - Assume user equations are elementary functions
 - Construct an efficient computational graph
 - Nodes (basic functions): sin, asin, sqrt, pow, log, exp
 - Edges (basic operators): add, sub, mul, div, composition

High precision machine representation format Zheng Gu (M Eng)

Interface to TADIFF: TaylorExpansion class

Rigorous Polynomial Approximations (RPA)

f(t) = -8.4 + t (51.7 + t (-74.05 + t (-9.4 + t (74.35 + t (-43.2 + t 7.2)))))

on [-1, 1] has RPA $(T_5, [-7.2, 7.2])$ then

7.2 $t^6 = f(t) - T_5(t) \in [-7.2, 7.2] \quad \forall t \in [-1, 1]$

Rigorous bounds

Observed rigorous defect

Rigorous bounds

Controlled rigorous defect

Rigorous bounds

Natural interval extension rigorous (overestimation) sup-norm Interval arithmetic

Rigorous polynomial approximation and sup-norm in 1D Joldes (2011)

SOLLYA Chevillard, Lauter, Joldes [SOLLYA] (2006-2016)

SOLLYA interface: Tmodel class

Controller

Traditional error model

 $err = Ch^{p+1}$

Elementary controller

$$\frac{h_{\text{new}}}{h_{\text{trial}}} = 0.9 \ \left(\frac{\text{Tol}}{\text{err}}\right)^{1/(\rho+1)}$$

Rigorous error model

$$\Delta z = d_0 + d_1 h + \ldots + d_p h^p + d_{p+1} h^{p+1} \quad d_k
eq 0$$

Roots controller

$$\Delta z - TOL = 0$$
 $\Delta z + TOL = 0$

ODETS: Putting it all together

Guaranteed ODE defect control Corless and Corliss (1991), Nedialkov (1999)

- Evaluate computational graph TaylorExpansion class
- Compute approximate solution using taylor arithemetic ApproximateSolution class
- Compute rigorous polynomial and bound it Tmodel class
- Apply stepsize control to rigorously control error ODETS class

Problem	The process	Approximate solution	Rigorous bound	Controller	ODETS	Example
Planets						

