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Problem statement

Real Word
Problem

Reference Problem
x' = f(t,x),  x(t0) = x0

Perturbed Reference Problem
z' = f(t,z) + ∆z(t),  z(t0) = x0 

compute approximate
solution z(t)

||∆z|| < Tol model
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Defect control literature

I Enright advocates asymptotic defect control
Enright and Coworkers and Students (1989-2012)

I Defect control and ODE boundary value problem
Enright and Muir, Shampine and Muir (1993-2004)

I Corless and Corliss proposed rigorous defect control
Corless and Corliss (1991)
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Numerical problem
Given TOL, approximate z on [ti , ti+1] near xi get defect

∆z
(
t
)def
= z ′

(
t
)
−f
(
t , z
(
t
))

Find stepsize so that z satisfies on [ti , ti+1]

z ′
(
t
)
= f
(
t , z
(
t
))

+∆z
(
t
)

z
(
ti
)
= xi ‖∆z‖∞ ≤ TOL

Then z exactly solves on [t0, tf ]

z ′
(
t
)
= f
(
t , z
(
t
))

+∆z
(
t
)

z
(
t0
)
= x0 ‖∆z‖∞ ≤ TOL
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How to do it?

I Construct approximate solution z

I Rigorously bound ∆z on [t0, tf ]

I Find good stepsize

5/15



Problem The process Approximate solution Rigorous bound Controller ODETS Example

Approximate solution

Numerical ODE solvers for the initial value problem

x ′
(
t
)
= f
(
t , x
(
t
))

x
(
t0
)
= x0 t ∈ [t0, tf ]

I control local error on each step

I return skeletal solution
(
ti , xi

)
I return a continuously differentiable approximation z to x
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Taylor series method

Computation often regarded as expensive
This is not the case

Computing defect inexpensive
Compared to cost of Taylor series method itself

z
(
t
)
=

n∑
k=0

(
z
)

k

(
t − ti

)k where
(
z
)

k =
1
k
(
f
)

k−1

Data management: ApproximateSolution class
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Automatic differentiation via operator overloading
From f to its Computational Graph, a DAG
Bendtsen and Stauning [FADBAD++, TADIFF ] (1997)

Idea: Taylor arithmetic
I Assume user equations are elementary functions

I Construct an efficient computational graph

I Nodes (basic functions): sin, asin, sqrt, pow, log, exp

I Edges (basic operators): add, sub, mul, div, composition

High precision machine representation format
Zheng Gu (M Eng)

Interface to TADIFF: TaylorExpansion class
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Rigorous Polynomial Approximations (RPA)
f (t) = −8.4 + t (51.7 + t (−74.05 + t (−9.4 + t (74.35 + t (−43.2 + t 7.2)))))

on [−1, 1] has RPA
(
T5, [−7.2, 7.2]

)
then

7.2 t6 = f (t)− T5(t) ∈ [−7.2, 7.2] ∀t ∈ [−1, 1]
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Rigorous bounds
Observed rigorous defect
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Rigorous bounds
Controlled rigorous defect
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Rigorous bounds

Natural interval extension rigorous (overestimation) sup-norm
Interval arithmetic

Rigorous polynomial approximation and sup-norm in 1D
Joldes (2011)

SOLLYA
Chevillard, Lauter, Joldes [SOLLYA ] (2006-2016)

SOLLYA interface: Tmodel class
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Controller
Traditional error model

err = Chp+1

Elementary controller

hnew

htrial
= 0.9

(
Tol
err

)1/(p+1)

Rigorous error model

∆z = d0 + d1h + . . . + dphp + dp+1hp+1 dk 6= 0

Roots controller

∆z − TOL = 0 ∆z + TOL = 0
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ODETS: Putting it all together
Guaranteed ODE defect control
Corless and Corliss (1991), Nedialkov (1999)

I Evaluate computational graph
TaylorExpansion class

I Compute approximate solution using taylor arithemetic
ApproximateSolution class

I Compute rigorous polynomial and bound it
Tmodel class

I Apply stepsize control to rigorously control error
ODETS class
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Planets
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