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Defect control literature

I Enright advocates asymptotic defect control
Enright and Coworkers and Students (1989-2012)

I Defect control and ODE boundary value problem
Enright and Muir, Shampine and Muir (1993-2004)

I Corless and Corliss proposed rigorous defect control
Corless and Corliss (1991)
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Numerical problem
Given

x ′
(
t
)
= f
(
t , x
(
t
))

x(t0) = x0 tend > t0 tol > 0

compute approximate u on [ti , ti+1] near xi and compute defect

∆u
(
t
)def
= u′

(
t
)
−f
(
t ,u
(
t
))

Find stepsize so that u satisfies on [ti , ti+1]

u′
(
t
)
= f
(
t ,u
(
t
))

+∆u
(
t
)

u
(
ti
)
= xi ‖∆u‖∞ ≤ tol

Then u exactly solves “nearby” problem on [t0, tend]

u′
(
t
)
= f
(
t ,u
(
t
))

+∆u
(
t
)

u
(
t0
)
= x0 ‖∆u‖∞ ≤ tol
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How to do it?

I Construct approximate solution u

I Bound ‖∆u
(
t
)
‖∞ ≤ tol rigorously on [t0, tend]

I Find good stepsize
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Approximate solution
Good numerical ODE solvers for the initial value problem

x ′(t) = f
(
t , x(t)

)
x(t0) = x0

I control local error on each step
I return skeletal solution

(
tj , xj

)
I return a continuously differentiable approximation u to x

Defect control (DC) methods

I monitor and control the maximum magnitude of the defect
I Asymptotic DC estimates ‖∆u‖∞ by evaluating it at

carefully selected points in each integration interval
I Rigorous DC ensures ‖∆u(t)‖ ≤ tol on [t0, tend]
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Taylor series method

Computation often regarded as expensive
This is not the case

Computing defect inexpensive
Compared to cost of Taylor series method itself

u
(
t
)
=

n∑
k=0

(
u
)

k

(
t − ti

)k where
(
u
)

k =
1
k
(
f
)

k−1

Data management: ApproximateSolution class
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Automatic differentiation via operator overloading

From f to its Computational Graph, a DAG
Bendtsen and Stauning [FADBAD++, TADIFF ] (1997)

Idea: Taylor arithmetic
I Assume user equations are elementary functions

I Construct an efficient computational graph

I Nodes (basic functions): sin, asin, sqrt, pow, log, exp

I Edges (basic operators): add, sub, mul, div, composition

Interface to TADIFF: TaylorExpansion class
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RPA based on Taylor Models (TMs)
TMs: Berz & Makino, . . . RPA: Joldes, . . .

I Represent a function on [a,b] as a Taylor polynomial +
interval error bound:(

p, r
)

means f (t)−p(t) ∈ r = [ r , r̄ ] for all t ∈ [a,b]

I TMs of degree 4 for sin(t) and exp(−t) on [0, π/2]
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Arithmetic operations with TMs
I E.g. Addition f (t)− p1(t) ∈ r1, g(t)− p2(t) ∈ r2 :

f (t) + g(t)−
(
p1(t) + p2(t)

)
∈ r1 + r2

I Multiplication, division, elementary function: construct
polynomial part and bound remainder terms
Berz & Makino, Joldes
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Example: TMs of degree 5

0 0.5 1 1.5 2

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
sin(t)
p1(t)
p1(t) + r1

0 0.5 1 1.5 2

t

0

0.2

0.4

0.6

0.8

1

1.2
exp(-t)
p2(t)
p2(t) + r2

0 0.5 1 1.5 2

t

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
sin(t) + exp(−t)
p1(t) + p2(t)
p1(t) + p2(t) + r1 + r2

0 0.5 1 1.5 2

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
sin(t) ∗ exp(−t)
p(t)
p(t) + r

11/27



Problem Approximate solution Taylor models Our process ODETS Results Conclusions

Example: TMs of degree 6
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Example: TMs of degree 7
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Our process
On each integration interval [tj , tj+1]

Phase I: Compute approximate (polynomial) solution
We use Taylor series hj = tj+1 − tj

u
(
t
)
= u0 + u1

(
t − tj

)
+ · · ·+ up

(
t − tj

)k t ∈ [0,hj ]

I u0 initial condition at tj
I ui Taylor coefficients at tj
I computed using automatic differentiation and FADBAD++

Bendtsen and Stauning

Interpolate f
(
tj+1,u(tj+1)

)
:

U
(
t
)
= u

(
t
)
+

∆u
(
tj+1
)

hk
j

(
t − tj

)k+1−
∆u
(
tj+1
)

hk+1
j

(
t − ti

)k+2
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Our process cont.
Phase II: Bound the defect

I Evaluate code list of x ′ − f (t , x) with input
(
U, [0,0]

)
in TM

arithmetic using SOLLYA package
Chevillard, Lauter, Joldes

For each component of the solution, the result is a
polynomial p and a remainder bound r :

∆U
(
t
)
−p
(
t
)
= [U ′

(
t
)
−f
(
t ,U

(
t
))

]− p(t) ∈ r on [tj , tj+1]

I Compute using SOLLYA package

rigorous bound p̄ ≥ ‖p‖∞ = sup
t∈[tj ,tj+1]

|p(t)|

I Then

‖∆U‖∞ ≤ δ := p + |r |, |r | = max{|r |, |r |}
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Example
Consider

x ′
(
t
)
= f
(
t , x
(
t
))

= x
(
t
)
−x
(
t
)2 x

(
0
)
= 0.2

and

u
(
t
)
= 0.2 + 0.16t + 0.048t2 + 1.0667×10−3t3 [t0, t1] = [0,0.4]

First three coefficients exact; last rounded to 4 digits

Interpolating f
(
t1,u

(
t1
))

(4 digits)

U
(
t
)
= v

(
t
)
+1.5795×10−2t4 − 3.9486×10−2t5

Evaluating x ′ − (x − x2) with (U, [0,0]) on [0,0.4]

p(t) = 1.3878×10−17t + 10−10t2 + 7.7898×10−2t3

− 2.0426×10−1t4 + 2.8849×10−2t5

r = [−5.1923×10−5,1.8090×10−17]
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Stepsize control
We use an “elementary” stepsize controller

I Set δmax = maxj δj
δj bounds j th solution component defect

I If δmax ≤ tol, accept hj and

hj+1 = 0.9 h
(

0.5 tol
δmax

)1/k

I else reject step and recompute δmax with

hj ← hj

(
0.25 tol
δmax

)1/k

Note coefficients are not recomputed, just δmax

It appears very challenging to find a good controller
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ODETS: Putting it all together
Guaranteed ODE defect control
Corless and Corliss (1991), Nedialkov (1999)

I Evaluate computational graph
TaylorExpansion class

I Compute approximate solution using taylor arithemetic
ApproximateSolution class

I Compute defect TM and bound it
Tmodel class

I Apply stepsize control to rigorously control defect
ODETS class
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Defect controlled Predator-Prey
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Figure: Predator-prey, order 14, tol = 10−8
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Defect controlled Predator-Prey
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Figure: Predator-prey, order 14, tol = 10−8
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Defect controlled Lorenz
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Figure: Lorenz, order 14, tol = 10−8
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Defect controlled Lorenz
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Figure: Lorenz, order 14, tol = 10−8
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Accepted/rejected steps

Lorenz tend = 20 pred. prey tend = 40
order tol acc rej acc rej

15

10−6 356 79 80 23
10−8 465 65 103 20

10−10 612 25 135 15
10−12 814 2 179 15

20

10−6 266 70 62 19
10−8 325 80 76 22

10−10 399 81 92 25
10−12 508 57 114 28
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Conclusions

I Corless and Corliss rigorous defect control implemented
I It appears very challenging to find a good step controller
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