Rigorous Defect Control and the Numerical Solution of ODEs

John Ernsthausen

McMaster University
johnernsthausen.com/sonad-talk.pdf

SONAD 2017
May 19, 2017

Problem statement

Defect control literature

- Enright advocates asymptotic defect control Enright and Coworkers and Students (1989-2012)
- Defect control and ODE boundary value problem Enright and Muir, Shampine and Muir (1993-2004)
- Corless and Corliss proposed rigorous defect control Corless and Corliss (1991)

Numerical problem

Given

$$
x^{\prime}(t)=f(t, x(t)) \quad x\left(t_{0}\right)=x_{0} \quad t_{\mathrm{end}}>t_{0} \quad \text { tol }>0
$$

compute approximate u on $\left[t_{i}, t_{i+1}\right]$ near x_{i} and compute defect

$$
\Delta u(t) \stackrel{\text { def }}{=} u^{\prime}(t)-f(t, u(t))
$$

Find stepsize so that u satisfies on $\left[t_{i}, t_{i+1}\right]$

$$
u^{\prime}(t)=f(t, u(t))+\Delta u(t) \quad u\left(t_{i}\right)=x_{i} \quad\|\Delta u\|_{\infty} \leq \text { tol }
$$

Then u exactly solves "nearby" problem on [$t_{0}, t_{\text {end }}$]

$$
u^{\prime}(t)=f(t, u(t))+\Delta u(t) \quad u\left(t_{0}\right)=x_{0} \quad\|\Delta u\|_{\infty} \leq \text { tol }
$$

How to do it?

- Construct approximate solution u
- Bound $\|\Delta u(t)\|_{\infty} \leq$ tol rigorously on $\left[t_{0}, t_{\text {end }}\right]$
- Find good stepsize

Approximate solution

Good numerical ODE solvers for the initial value problem

$$
x^{\prime}(t)=f(t, x(t)) \quad x\left(t_{0}\right)=x_{0}
$$

- control local error on each step
- return skeletal solution $\left(t_{j}, x_{j}\right)$
- return a continuously differentiable approximation u to x

Defect control (DC) methods

- monitor and control the maximum magnitude of the defect
- Asymptotic DC estimates $\|\Delta u\|_{\infty}$ by evaluating it at carefully selected points in each integration interval
- Rigorous DC ensures $\|\Delta u(t)\| \leq$ tol on $\left[t_{0}, t_{\text {end }}\right]$

Taylor series method

Computation often regarded as expensive
This is not the case
Computing defect inexpensive
Compared to cost of Taylor series method itself

$$
u(t)=\sum_{k=0}^{n}(u)_{k}\left(t-t_{i}\right)^{k} \quad \text { where } \quad(u)_{k}=\frac{1}{k}(f)_{k-1}
$$

Data management: ApproximateSolution class

Automatic differentiation via operator overloading

From f to its Computational Graph, a DAG
Bendtsen and Stauning [FADBAD++, TADIFF] (1997)
Idea: Taylor arithmetic

- Assume user equations are elementary functions
- Construct an efficient computational graph
- Nodes (basic functions): sin, asin, sqrt, pow, log, exp
- Edges (basic operators): add, sub, mul, div, composition

Interface to TADIFF: TaylorExpansion class

RPA based on Taylor Models (TMs)

TMs: Berz \& Makino, . . . RPA: Joldes, ...

- Represent a function on $[a, b]$ as a Taylor polynomial + interval error bound:

$$
(p, \boldsymbol{r}) \text { means } f(t)-p(t) \in \boldsymbol{r}=[\underline{\boldsymbol{r}}, \overline{\boldsymbol{r}}] \text { for all } t \in[a, b]
$$

- TMs of degree 4 for $\sin (t)$ and $\exp (-t)$ on $[0, \pi / 2]$

Arithmetic operations with TMs

- E.g. Addition $f(t)-p_{1}(t) \in \boldsymbol{r}_{1}, \quad g(t)-p_{2}(t) \in \boldsymbol{r}_{2}:$

$$
f(t)+g(t)-\left(p_{1}(t)+p_{2}(t)\right) \in \boldsymbol{r}_{1}+\boldsymbol{r}_{2}
$$

- Multiplication, division, elementary function: construct polynomial part and bound remainder terms
Berz \& Makino, Joldes

(a) addition

(b) muliplication

Example: TMs of degree 5

Example: TMs of degree 6

Example: TMs of degree 7

Our process

On each integration interval $\left[t_{j}, t_{j+1}\right]$
Phase I: Compute approximate (polynomial) solution
We use Taylor series $h_{j}=t_{j+1}-t_{j}$

$$
u(t)=u_{0}+u_{1}\left(t-t_{j}\right)+\cdots+u_{p}\left(t-t_{j}\right)^{k} \quad t \in\left[0, h_{j}\right]
$$

- u_{0} initial condition at t_{j}
- u_{i} Taylor coefficients at t_{j}
- computed using automatic differentiation and FADBAD++ Bendtsen and Stauning

Interpolate $f\left(t_{j+1}, u\left(t_{j+1}\right)\right)$:

$$
U(t)=u(t)+\frac{\Delta u\left(t_{j+1}\right)}{h_{j}^{k}}\left(t-t_{j}\right)^{k+1}-\frac{\Delta u\left(t_{j+1}\right)}{h_{j}^{k+1}}\left(t-t_{i}\right)^{k+2}
$$

Our process cont.

Phase II: Bound the defect

- Evaluate code list of $x^{\prime}-f(t, x)$ with input $(U,[0,0])$ in TM arithmetic using SOLLYA package
Chevillard, Lauter, Joldes
For each component of the solution, the result is a polynomial p and a remainder bound r :

$$
\Delta U(t)-p(t)=\left[U^{\prime}(t)-f(t, U(t))\right]-p(t) \in \boldsymbol{r} \text { on }\left[t_{j}, t_{j+1}\right]
$$

- Compute using sollya package

$$
\text { rigorous bound } \quad \bar{p} \geq\|p\|_{\infty}=\sup _{t \in\left[t, f_{j+1}\right]}|p(t)|
$$

- Then

$$
\|\Delta U\|_{\infty} \leq \delta:=\bar{p}+|\boldsymbol{r}|, \quad|\boldsymbol{r}|=\max \{|\boldsymbol{r}|,|\boldsymbol{r}|\}
$$

Example

Consider

$$
x^{\prime}(t)=f(t, x(t))=x(t)-x(t)^{2} \quad x(0)=0.2
$$

and

$$
u(t)=0.2+0.16 t+0.048 t^{2}+1.0667 \times 10^{-3} t^{3} \quad\left[t_{0}, t_{1}\right]=[0,0.4]
$$

First three coefficients exact; last rounded to 4 digits Interpolating $f\left(t_{1}, u\left(t_{1}\right)\right)$ (4 digits)

$$
U(t)=v(t)+1.5795 \times 10^{-2} t^{4}-3.9486 \times 10^{-2} t^{5}
$$

Evaluating $x^{\prime}-\left(x-x^{2}\right)$ with $(U,[0,0])$ on $[0,0.4]$

$$
\begin{aligned}
p(t)= & 1.3878 \times 10^{-17} t+10^{-10} t^{2}+7.7898 \times 10^{-2} t^{3} \\
& -2.0426 \times 10^{-1} t^{4}+2.8849 \times 10^{-2} t^{5} \\
\boldsymbol{r}= & {\left[-5.1923 \times 10^{-5}, 1.8090 \times 10^{-17}\right] }
\end{aligned}
$$

Enclosures of $\Delta u(t)$ (blue) and $\Delta U(t)$ (red)

$$
x^{\prime}=x-x^{2}, x(0)=0.2, \text { order } 15, \text { tol }=10^{-10}
$$

$$
x^{\prime}=x-x^{2}, x(0)=0.2, \text { order } 15, \text { tol }=10^{-10}
$$

Stepsize control

We use an "elementary" stepsize controller

- Set $\delta_{\max }=\max _{j} \delta_{j}$
δ_{j} bounds j th solution component defect
- If $\delta_{\max } \leq$ tol, accept h_{j} and

$$
h_{j+1}=0.9 h\left(\frac{0.5 \text { tol }}{\delta_{\max }}\right)^{1 / k}
$$

- else reject step and recompute $\delta_{\max }$ with

$$
h_{j} \leftarrow h_{j}\left(\frac{0.25 \mathrm{tol}}{\delta_{\max }}\right)^{1 / k}
$$

Note coefficients are not recomputed, just $\delta_{\max }$ It appears very challenging to find a good controller

ODETS: Putting it all together

Guaranteed ODE defect control
Corless and Corliss (1991), Nedialkov (1999)

- Evaluate computational graph TaylorExpansion class
- Compute approximate solution using taylor arithemetic ApproximateSolution class
- Compute defect TM and bound it Tmodel class
- Apply stepsize control to rigorously control defect ODETS class

Defect controlled Predator-Prey

Figure: Predator-prey, order 14, tol $=10^{-8}$

Defect controlled Predator-Prey

Figure: Predator-prey, order 14, tol $=10^{-8}$

Defect controlled Lorenz

Figure: Lorenz, order 14, tol $=10^{-8}$

Defect controlled Lorenz

Figure: Lorenz, order 14, tol $=10^{-8}$

Accepted/rejected steps

			Lorenz $t_{\text {end }}=20$		pred. prey$t_{\text {end }}=40$ order		tol	acc	rej	acc	rej
15	10^{-6}	356	79	80	23						
	10^{-8}	465	65	103	20						
	10^{-10}	612	25	135	15						
	10^{-12}	814	2	179	15						
20	10^{-6}	266	70	62	19						
	10^{-8}	325	80	76	22						
	10^{-10}	399	81	92	25						
	10^{-12}	508	57	114	28						

Conclusions

- Corless and Corliss rigorous defect control implemented
- It appears very challenging to find a good step controller

