Rigorous Defect Control and the Numerical Solution of ODEs

John Ernsthausen

McMaster University

johnernsthausen.com/sonad-talk.pdf

SONAD 2017 May 19, 2017

Problem statement

Defect control literature

- Enright advocates asymptotic defect control Enright and Coworkers and Students (1989-2012)
- Defect control and ODE boundary value problem Enright and Muir, Shampine and Muir (1993-2004)
- Corless and Corliss proposed rigorous defect control Corless and Corliss (1991)

Given

$$x'(t) = f(t, x(t))$$
 $x(t_0) = x_0$ $t_{end} > t_0$ tol > 0

compute approximate u on $[t_i, t_{i+1}]$ near x_i and compute defect

$$\Delta u(t) \stackrel{\text{\tiny def}}{=} u'(t) - f(t, u(t))$$

Find stepsize so that *u* satisfies on $[t_i, t_{i+1}]$

$$u'(t) = f(t, u(t)) + \Delta u(t) \quad u(t_i) = x_i \quad \|\Delta u\|_{\infty} \le \text{tol}$$

Then *u* exactly solves "nearby" problem on $[t_0, t_{end}]$

$$u'(t) = f(t, u(t)) + \Delta u(t)$$
 $u(t_0) = x_0$ $\|\Delta u\|_{\infty} \le tol$

Results

How to do it?

- Construct approximate solution u
- ▶ Bound $\|\Delta u(t)\|_{\infty} \le \text{tol rigorously on } [t_0, t_{end}]$
- Find good stepsize

Approximate solution

Good numerical ODE solvers for the initial value problem

x'(t) = f(t, x(t)) $x(t_0) = x_0$

- control local error on each step
- return skeletal solution (t_i, x_i)
- return a continuously differentiable approximation u to x

Defect control (DC) methods

- monitor and control the maximum magnitude of the defect
- Asymptotic DC estimates $\|\Delta u\|_{\infty}$ by evaluating it at carefully selected points in each integration interval
- ▶ Rigorous DC ensures $||\Delta u(t)|| \le \text{tol on } [t_0, t_{end}]$

Taylor series method

Computation often regarded as expensive This is not the case

Computing defect inexpensive Compared to cost of Taylor series method itself

$$u(t) = \sum_{k=0}^{n} (u)_{k} (t - t_{i})^{k}$$
 where $(u)_{k} = \frac{1}{k} (f)_{k-1}$

Data management: ApproximateSolution class

Results

Automatic differentiation via operator overloading

From *f* to its Computational Graph, a DAG Bendtsen and Stauning [FADBAD++, TADIFF] (1997)

Idea: Taylor arithmetic

- Assume user equations are elementary functions
- Construct an efficient computational graph
- Nodes (basic functions): sin, asin, sqrt, pow, log, exp
- Edges (basic operators): add, sub, mul, div, composition

Interface to TADIFF: TaylorExpansion class

Results

RPA based on Taylor Models (TMs)

TMs: Berz & Makino, ... RPA: Joldes, ...

Represent a function on [a, b] as a Taylor polynomial + interval error bound:

 $(\boldsymbol{p}, \boldsymbol{r})$ means $f(t) - \boldsymbol{p}(t) \in \boldsymbol{r} = [\underline{r}, \overline{r}]$ for all $t \in [a, b]$

• TMs of degree 4 for sin(t) and exp(-t) on $[0, \pi/2]$

Arithmetic operations with TMs

► E.g. Addition
$$f(t) - p_1(t) \in r_1$$
, $g(t) - p_2(t) \in r_2$:

$$f(t) + g(t) - (p_1(t) + p_2(t)) \in r_1 + r_2$$

 Multiplication, division, elementary function: construct polynomial part and bound remainder terms
 Berz & Makino, Joldes

Example: TMs of degree 5

Example: TMs of degree 6

Example: TMs of degree 7

Our process

On each integration interval $[t_j, t_{j+1}]$

Phase I: Compute approximate (polynomial) solution We use Taylor series $h_j = t_{j+1} - t_j$

$$u(t) = u_0 + u_1(t - t_j) + \cdots + u_p(t - t_j)^k$$
 $t \in [0, h_j]$

- u_0 initial condition at t_i
- *u_i* Taylor coefficients at *t_i*
- computed using automatic differentiation and FADBAD++ Bendtsen and Stauning

Interpolate $f(t_{j+1}, u(t_{j+1}))$:

$$U(t) = u(t) + \frac{\Delta u(t_{j+1})}{h_j^k} (t - t_j)^{k+1} - \frac{\Delta u(t_{j+1})}{h_j^{k+1}} (t - t_j)^{k+2}$$

Our process cont. Phase II: Bound the defect

Evaluate code list of x' - f(t, x) with input (U, [0, 0]) in TM arithmetic using SOLLYA package Chevillard, Lauter, Joldes

For each component of the solution, the result is a polynomial p and a remainder bound r:

 $\Delta U(t) - p(t) = [U'(t) - f(t, U(t))] - p(t) \in \mathbf{r} \text{ on } [t_j, t_{j+1}]$

Compute using SOLLYA package

rigorous bound $\bar{p} \ge \|p\|_{\infty} = \sup_{t \in [t_j, t_{j+1}]} |p(t)|$

$$\|\Delta U\|_{\infty} \leq \delta := \overline{\rho} + |\mathbf{r}|, \qquad |\mathbf{r}| = \max\{|\underline{\mathbf{r}}|, |\overline{\mathbf{r}}|\}$$

$$\begin{array}{c|cccc} \mbox{Problem } & \mbox{Approximate solution } & \mbox{Taylor models } & \mbox{Our process } & \mbox{ODETS } & \mbox{Result } & \mbox{Conclusion} \\ \hline \mbox{Example} \\ & \mbox{Consider} \\ & x'(t) = f(t,x(t)) = x(t) - x(t)^2 & x(0) = 0.2 \\ & \mbox{and} \\ & u(t) = 0.2 + 0.16t + 0.048t^2 + 1.0667 \times 10^{-3}t^3 & [t_0,t_1] = [0,0.4] \\ & \mbox{First three coefficients exact; last rounded to 4 digits} \\ & \mbox{Interpolating } f(t_1,u(t_1)) & (4 \mbox{ digits}) \\ & \mbox{$U(t) = v(t) + 1.5795 \times 10^{-2}t^4 - 3.9486 \times 10^{-2}t^5$} \\ & \mbox{Evaluating } x' - (x - x^2) \mbox{ with } (U, [0,0]) \mbox{ on } [0,0.4] \\ & \mbox{$p(t) = 1.3878 \times 10^{-17}t + 10^{-10}t^2 + 7.7898 \times 10^{-2}t^3$} \\ & \mbox{$-2.0426 \times 10^{-1}t^4 + 2.8849 \times 10^{-2}t^5$} \\ \end{array}$$

 $r = [-5.1923 \times 10^{-5}, 1.8090 \times 10^{-17}]$

Enclosures of $\Delta u(t)$ (blue) and $\Delta U(t)$ (red)

 $x' = x - x^2$, x(0) = 0.2, order 15, tol = 10^{-10}

 $x' = x - x^2$, x(0) = 0.2, order 15, tol = 10^{-10}

1000

600 800

ŧ

-4

0

200

400 600 800 1000

0

0 200 400

Stepsize control

We use an "elementary" stepsize controller

• Set $\delta_{\max} = \max_j \delta_j$

 δ_j bounds *j*th solution component defect

• If $\delta_{\max} \leq \text{tol}$, accept h_j and

$$h_{j+1} = 0.9 \ h \left(rac{0.5 \ ext{tol}}{\delta_{max}}
ight)^{1/k}$$

- else reject step and recompute δ_{max} with

$$h_j \leftarrow h_j \left(\frac{0.25 \text{ tol}}{\delta_{max}} \right)^{1/k}$$

Note coefficients are not recomputed, just δ_{max} It appears very challenging to find a good controller

ODETS: Putting it all together

Guaranteed ODE defect control Corless and Corliss (1991), Nedialkov (1999)

- Evaluate computational graph TaylorExpansion class
- Compute approximate solution using taylor arithemetic ApproximateSolution class
- Compute defect TM and bound it Tmodel class
- Apply stepsize control to rigorously control defect ODETS class

Defect controlled Predator-Prey

Figure: Predator-prey, order 14, tol = 10^{-8}

Defect controlled Predator-Prey

Figure: Predator-prey, order 14, tol = 10^{-8}

Results

Defect controlled Lorenz

Figure: Lorenz, order 14, tol = 10^{-8}

Defect controlled Lorenz

Figure: Lorenz, order 14, tol = 10^{-8}

Accepted/rejected steps

		Lorenz $t_{end} = 20$		pred. prey $t_{end} = 40$	
order	tol	acc	rej	acc	rej
15	10 ⁻⁶	356	79	80	23
	10 ⁻⁸	465	65	103	20
	10^{-10}	612	25	135	15
	10 ⁻¹²	814	2	179	15
20	10 ⁻⁶	266	70	62	19
	10 ⁻⁸	325	80	76	22
	10^{-10}	399	81	92	25
	10 ⁻¹²	508	57	114	28

- Corless and Corliss rigorous defect control implemented
- It appears very challenging to find a good step controller