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The initial-value problem (IVP)

Consider

x Õ(t) = f
!
t, x(t)

"
x(t0) = x0 x œ Rd t œ [t0, tend]

Given any u œ C1([t0, tend],Rd), u(t) =
!
u1(t), . . . , ud(t)

"

I the residual or defect at u is
�u(t) def= uÕ(t) ≠ f

!
t, u(t)

"
�u(t0) def= u(t0) ≠ x0

I u(t) solves exactly
uÕ(t) = f

!
t, u(t)

"
+ �u(t) u(t0) = x0 + �u(t0)

you have space, increase 
line spacing



Approximate solution and defect control
Approximate solution (AS)
I Piecewise di�erentiable function
I defined in a neighborhood of start time
I nearly satisfies the initial condition

Given tolerance tol

I modern numerical IVP solvers provide polynomial AS

I a defect control method tries to achieve (Enright 1989)

Î�uÎ[t0, tend],Œ Æ tol

ÎwÎJ ,Œ
def= sup {Îw(t)ÎŒ | t œ J } for w œ C0(J ,Rd)

consistency with caps smalls

Is this definition needed for 10 min? 
Talk is more informal



Residual-based backward-error and analysis

Suppose �u(t) is smaller than the perturbations inherent in the
modelling context of the IVP

Suppose �u satisfies Î�uÎ[t0, tend],Œ Æ tol

Then u can be considered a satisfactory solution to

x Õ(t) = f
!
t, x(t)

"
x(t0) = x0

Don’t see what the colors emphasize



Forward vs. backward error

Forward error
I Standard IVP ODE solvers control local error on each step

Local error control can be deceived
No guaranteed bounds for the global error

I Interval methods compute such bounds
Hard to keep them tight

Backward error
I Defect control methods estimate Î�uÎ[t0, tend],Œ
I We bound rigorously Î�uÎ[t0, tend],Œ



Previous work

I Enright advocates asymptotic defect control for Runge-Kutta
(RK) methods
Enright with coworkers and students (1989–2012)

I Defect control and ODE boundary value problem
Enright and Muir, Shampine and Muir (1993–2004)

I Corless and Corliss (1991) “Rationale for Guaranteed ODE
Defect Control” outlined an algorithm, no implementation
details



Outline

Integration scheme

Examples

Results

Conclusion



Integration scheme Examples Results Conclusion

Scheme to integrate ODE by time stepping
Given initial condition yn at tn and tolerance tol, solve sequence
of local problems

y Õ(t) = f
!
t, y(t)

"
y(tn) = yn y0 = x0

I Compute Hermite polynomial approximate solution H
automatic di�erentiation in floating-point arithmetic
Fadbad++ (Bendtsen and Stauning)

I if validated, Bound the defect Î�HÎ[tn, tn+1],Œ Æ tol

rigorous Taylor model arithmetic and rigorous sup-norm
Sollya (Joldes et. al.)

I Stepsize controller provides hn, take step tn+1 = tn + hn
floating-point arithmetic, very challenging to get right

8/14

Misleading: AD is for TCs, from which H is formed after 



Integration scheme Examples Results Conclusion

Example: Lorenz system

x

Õ
= 10(y ≠ x)

y

Õ
= x(28 ≠ z) ≠ y

z

Õ
= xy ≠ 8/3z

x(0) = (15, 15, 36)

T

Enclosures of �H(t) and computed
bounds
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Integration scheme Examples Results Conclusion

Rigorous numerical results: Lorenz system
Integrated for t œ [0, 20]
An entry under defect is the largest defect bound over all the steps
Under error is the largest global error over [0, 20]

max num. steps
k tol defect error accept reject

15

1.0e-06 6.7e-07 3.1e-01 358 0
1.0e-08 5.2e-09 3.3e-03 487 0
1.0e-10 4.9e-11 7.0e-05 662 0
1.0e-12 4.9e-13 1.6e-04 900 0

20

1.0e-06 9.1e-07 1.9e+00 251 0
1.0e-08 6.9e-09 6.2e-03 317 0
1.0e-10 5.6e-11 1.2e-04 399 0
1.0e-12 5.0e-13 1.8e-04 503 0
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Integration scheme Examples Results Conclusion

Rigorous numerical results: van der Pol

x Õ
1 = x2

x Õ
2 = 2(1 ≠ x2

1 )x2 ≠ x1
x(0) = (2, 0)T , t œ [0, 20]

max num. steps
k tol defect error accept reject

15

1.0e-06 8.3e-07 2.8e-07 79 0
1.0e-08 9.4e-09 3.7e-09 105 5
1.0e-10 7.7e-11 1.5e-10 142 4
1.0e-12 8.9e-13 3.3e-12 194 5

20

1.0e-06 9.2e-07 5.8e-07 58 3
1.0e-08 9.6e-09 1.3e-08 74 6
1.0e-10 7.3e-11 8.6e-11 93 4
1.0e-12 9.0e-13 8.2e-13 116 3

Stepsize control appears very e�ective!
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New table more informative, but this one still OK



Integration scheme Examples Results Conclusion

Non-rigorous results for 25 DETEST problems at p = 8
TOL NSTP DMAX Frac-D RMAX Frac-G

10≠2 571 2.04 0.02 2.82 1.0
10≠4 919 3.82 0.02 1.66 1.0
10≠6 1549 3.13 0.01 0.63 1.0
10≠8 2675 4.73 0.0 1.85 1.0

I Defect at H by 100 equidistant point evaluation over [tn, tn+1]
I NSTP total number of steps
I DMAX max defect/tol over all steps
I Frac-D fraction of steps where DMAX > 1
I RMAX max defect/Î(f )phpÎŒ over all steps
I Frac-G fraction of steps where RMAX Æ 1.01

(Enright and Yan, 2010)
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Consider color
(f)_ph^p out of the blue

max defect/error estimate 

The last two columns
don’t seem compatible

Look carefully at the numbers



Integration scheme Examples Results Conclusion

Non-rigorous results for 25 DETEST problems at p = 20

TOL NSTP DMAX Frac-D RMAX Frac-G
10≠2 345 2.71 0.06 2.0 0.99
10≠4 413 5.83 0.04 2.0 0.99
10≠6 502 3.22 0.03 2.0 1.0
10≠8 616 4.62 0.02 2.0 1.0

I Add 10≠10, can’t do 10≠12

I How Enright and Yan paper relates, why order 8
I What we are trying to show
I What we have shown
I Conclusions

13/14

surely you can do -12



Integration scheme Examples Results Conclusion

Conclusion

I We have a simple defect control method for Taylor series
solutions with an e�ective stepsize control

I Method can be applied with or without the validation phase
I With validation, we have achieved rigorous defect control, an

open problem for over 25 years
I Without validation, the stepsize controller computes stepsizes

that satisfy Î�uÎ[tn, tn+1],Œ Æ tol for 25 DETEST problems
I Validation phase can be applied to any ODE polynomial

approximate solution
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Open problem is NP != P
This is hardly an open problem. Remove


