Implementing Rigorous Defect Control

John M. Ernsthausen
Joint work with Ned Nedialkov

McMaster University
Canada

8th Taylor Model Workshop
May 9-11, 2018

Problem statement

Given the initial-value problem (IVP)

$$
x^{\prime}(t)=f(t,(t)) \in \mathbb{R}^{d} \quad x\left(t_{0}\right)=x_{0} \quad\left[t_{0}, t_{\text {end }}\right] \quad \text { tol }>0
$$

compute a piecewise polynomial approximate solution u

- continuously differentiable $t \in\left[t_{0}, t_{\text {end }}\right] \mapsto u(t)=\left(u_{1}(t), \ldots, u_{d}(t)\right) \in \mathbb{R}^{d}$
- nearly satisfying the initial condition

Compute defect

$$
\Delta u(t)=u^{\prime}(t)-f(t, u(t)) \quad \Delta u\left(t_{0}\right) \stackrel{\text { def }}{=} u\left(t_{0}\right)-x_{0}
$$

Rigorous bound

$$
\|\Delta u\|_{\infty} \stackrel{\text { def }}{=} \max _{i, t}\left|\Delta u_{i}(t)\right| \leq \text { tol } \quad t \in\left[t_{0}, t_{\text {end }}\right] \quad i=1, \ldots, d
$$

- Rigorous Polynomial Approximation (RPA)
- Taylor models (TM)
- Interval Arithmetic (IA)

Defect control literature

- Enright advocates asymptotic defect control Enright and Coworkers and Students (since 1989)
- Defect control and ODE boundary value problem Enright and Muir, Shampine and Muir (1993-2004)
- Corless and Corliss outlined rigorous defect control Corless and Corliss (1991)

Residual-based backward error analysis for ODE

Local residual-based backward error analysis for ODE

Given

$$
x^{\prime}(t)=f(t, x(t)) \quad x\left(t_{n}\right)=x_{n} \quad \text { tol }>0
$$

compute approximate u on $\left[t_{n}, t_{n+1}\right]$ and compute defect

$$
\Delta u(t) \stackrel{\text { def }}{=} u^{\prime}(t)-f(t, u(t)) \quad \Delta u\left(t_{n}\right) \stackrel{\text { def }}{=} u\left(t_{n}\right)-x_{n}
$$

Find stepsize so that u satisfies on $\left[t_{n}, t_{n+1}\right]$

$$
u^{\prime}(t)=f(t, u(t))+\Delta u(t) \quad u\left(t_{n}\right)=x_{n} \quad\|\Delta u\|_{\infty} \leq \text { tol }
$$

Then u exactly solves modified problem on [$t_{0}, t_{\text {end }}$]

$$
u^{\prime}(t)=f(t, u(t))+\Delta u(t) \quad u\left(t_{0}\right)=x_{0}+\Delta u\left(t_{0}\right) \quad\|\Delta u\|_{\infty} \leq \text { tol }
$$

Outline

Why defect control
Approximate solution
Our method
Interval arithmetic evaluation
ODETS software
Results
Conclusions

Backward error vs Forward error

Forward error

- Standard ODE-IVP solvers control local error on each step
- Local error control can be deceived
- No guarantee the global error is within some bounds
- Interval methods compute rigorous bounds on solution
- hard to keep them tight

Backward error

- Compute exact solution to a modified problem Approximate solution solves exactly $u^{\prime}(t)=f(t, u(t))+\Delta u(t)$
The model is usually an approximation anyhow
- Monitor and control the maximum magnitude of the defect Asymptotically correct defect estimate (Enright) Guarantee $\|\Delta u\|_{\infty} \leq$ tol

Why now is the right time for defect control

Approximate solution is true solution of modified problem Defect encaptulates all errors

Bounding real valued function
Well-studied problem in interval analysis
Rigorous Polynomial Approximation (Joldes 2011)
TM arithmetic in one independent variable
Rigorous supremum norm of a polynomial

Approximate solution

Good numerical ODE solvers for the initial value problem

$$
x^{\prime}(t)=f(t, x(t)) \quad x\left(t_{0}\right)=x_{0}
$$

- control local error on each step
- return skeletal solution $\left(t_{n}, x_{n}\right)$
- return a continuously differentiable approximation u to x

Defect control (DC) methods

- monitor and control the maximum magnitude of the defect
- Asymptotic DC estimates $\|\Delta u\|_{\infty}$ by evaluating it at carefully selected points in each integration interval
- Rigorous DC ensures $\|\Delta u(t)\| \leq$ tol on [to, tend $]$

Taylor series method

Computation often regarded as expensive
This is not the case

Computing defect inexpensive
Compared to cost of Taylor series method itself

$$
u(t)=\sum_{k=0}^{K}(u)_{k}\left(t-t_{i}\right)^{k} \quad \text { where } \quad(u)_{k}=\frac{1}{k}(f)_{k-1}
$$

Data management: ApproximateSolution class

Automatic differentiation via operator overloading

From f to its Computational Graph, a DAG
Bendtsen and Stauning [FADBAD++, TADIFF] (1997)
Idea: Taylor arithmetic

- Assume user equations are elementary functions
- Construct an efficient computational graph
- Nodes (basic functions): sin, asin, sqrt, pow, log, exp
- Edges (basic operators): add, sub, mul, div, composition Interface to TADIFF: TaylorExpansion class

Method to integrate ODE by time stepping

Given initial condition x_{n} at t_{n} and stepsize h_{n}, take a step to $t_{n+1}=t_{n}+h_{n}$
Phase I. Compute an approximate polynomial solution floating-point arithmetic

Phase II. Bound the defect
Taylor models and interval arithmetic
Phase III. Accept/reject step
floating-point arithmetic

Phase I: Compute an approximate polynomial solution

(a) We use Taylor series:

$$
u(t)=x_{n}+\left(x_{n}\right)_{1}\left(t-t_{n}\right)+\cdots+\left(x_{n}\right)_{K}\left(t-t_{n}\right)^{K}
$$

- $\left(x_{n}\right)_{k}$ are Taylor coefficients at t_{n}
- Computed using automatic differentiation and FADBAD++ Bendtsen and Stauning
(b) Evaluate $x_{n+1}=u\left(t_{n+1}\right)$ and interpolate $f\left(t_{n+1}, x_{n+1}\right)$:

$$
U(t)=u(t)+\frac{\Delta u\left(t_{n+1}\right)}{h_{n}^{K}}\left(t-t_{n}\right)^{K+1}-\frac{\Delta u\left(t_{n+1}\right)}{h_{n}^{K+1}}\left(t-t_{n}\right)^{K+2}
$$

This ensures $\Delta U\left(t_{n}\right)=\Delta U\left(t_{n+1}\right)=0$

Phase II: Bound the defect

We use the sOLLYA package: RPA and sup-norm computation Chevillard, Joldes, Lauter
(a) Evaluate the code list of $x^{\prime}-f(t, x)$ with $(U,[0,0])$ in TM arithmetic

- ith component of the result is $\left(p_{i}, \boldsymbol{r}_{i}\right)$:

$$
\Delta U_{i}(t)-p_{i}(t) \in \boldsymbol{r}_{i} \quad \text { for all } t \in\left[t_{n}, t_{n+1}\right]
$$

(b) Compute a rigorous enclosure $\boldsymbol{b}_{i}=\left[\underline{b}_{i}, \bar{b}_{i}\right]$:

$$
\underline{b}_{i} \leq \sup _{t \in\left[t_{n}, t_{n+1}\right]}\left|p_{i}(t)\right| \leq \bar{b}_{i}
$$

Then, on $\left[t_{n}, t_{n+1}\right]$,

$$
\left\|\Delta U_{i}\right\|_{\infty} \leq \delta_{i}:=\bar{b}_{i}+\left|\boldsymbol{r}_{i}\right|, \quad\left|\boldsymbol{r}_{i}\right|=\max \left\{\left|\underline{r_{i}}\right|,\left|\bar{r}_{i}\right|\right\}
$$

We ensure $\delta_{i} \leq$ tol for all $i=1, \ldots, \boldsymbol{d}$

Example

Consider

$$
x^{\prime}(t)=f(t, x(t))=x(t)-x(t)^{2} \quad x(0)=0.2
$$

and

$$
u(t)=0.2+0.16 t+0.048 t^{2}+1.0667 \times 10^{-3} t^{3} \quad\left[t_{0}, t_{1}\right]=[0,0.4]
$$

First three coefficients exact; last rounded to 4 digits Interpolating $f\left(t_{1}, u\left(t_{1}\right)\right)$ (4 digits)

$$
U(t)=v(t)+1.5795 \times 10^{-2} t^{4}-3.9486 \times 10^{-2} t^{5}
$$

Evaluating $x^{\prime}-\left(x-x^{2}\right)$ with $(U,[0,0]): \Delta U(t)-p(t) \in \boldsymbol{r}$ on $[0,0.4]$

$$
\begin{aligned}
p(t)= & 1.3878 \times 10^{-17} t+10^{-10} t^{2}+7.7898 \times 10^{-2} t^{3} \\
& -2.0426 \times 10^{-1} t^{4}+2.8849 \times 10^{-2} t^{5} \\
r= & {\left[-5.1923 \times 10^{-5}, 1.8090 \times 10^{-17}\right] }
\end{aligned}
$$

Figure 1: Enclosures of $\Delta u(t)$ (blue) and $\Delta U(t)$ (red)

Phase III: Accept/reject step

We use "elementary controller"
(a) $\delta_{\max }=\max _{i} \delta_{i},\left\|\Delta u_{i}\right\|_{\infty} \leq \delta_{i}$

If $\delta_{\max } \leq$ tol, accept step and predict

$$
h_{n+1}=0.9 h_{n}\left(\frac{0.5 \text { tol }}{\delta_{\max }}\right)^{1 / K} \quad K \text { order of defect }
$$

(b) else reject step and recompute $\delta_{\max }$ with

$$
h_{n} \leftarrow h_{n}\left(\frac{0.25 \text { tol }}{\delta_{\max }}\right)^{1 / K}
$$

- That is, repeat from Phase l(b)
- This involves evaluating $x^{\prime}-f(t, x)$ in TM arithmetic
- Taylor coefficients are not recomputed

Example: defect controlled $x^{\prime}=x-x^{2}, x(0)=0.2$

Figure 2: $t_{\text {end }}=5$, order 15, tol $=10^{-10}$

Example: defect controlled $x^{\prime}=x-x^{2}, x(0)=0.2$

Figure 3: $t_{\text {end }}=1000$, order $15, \mathrm{tol}=10^{-10}$

Why not interval arithmetic (IA) evaluation?

- Because is not very good
- IA evaluation: replace reals by intervals and execute in IA
- IA operations

$$
\boldsymbol{a} \bullet \boldsymbol{b}=\{a \bullet b \mid \boldsymbol{a} \in \boldsymbol{a}, b \in \boldsymbol{b}, \text { and } a \bullet b \text { is defined }\}
$$

- Evaluating $\Delta u=u^{\prime}-\left(u-u^{2}\right)$ in IA gives

$$
\begin{aligned}
u([0,0.4]) \in \boldsymbol{u} & =[0.2000,0.2722] \\
u^{\prime}([0,0.4]) \in \boldsymbol{u}^{\prime} & =[0.1599,0.2030] \\
\Delta u \in \boldsymbol{u}^{\prime}-\left(\boldsymbol{u}-\boldsymbol{u}^{2}\right) & =[-0.0722,0.0771]
\end{aligned}
$$

- Inexpensive to compute but the width of $[-0.0722,0.0771]$ is 1.4917×10^{-1}
Bounds can blow up for complicated f 's
- Width of \boldsymbol{r} is 5.1923×10^{-5}

TAM koon hninde cmoll

ODETS: Putting it all together

C++ implementation

- ODETS class implements the integration scheme
- User provides ODE function, e.g. template <typename T> void fcn(T t, const T * x, T * xp) \{

$$
x p[0]=x[0]-0.1 * x[0] * x[1]+0.02 * t ;
$$

$$
x p[1]=-x[1]+0.02 * x[0] * x[1]+0.008 * t
$$

\}

- FADBAD++ uses fcn to generate computational graph
- Taylor coefficients are computed through FADBAD++
- Tmodel class interfaces SOLLYA and overloads arithmetic operators and elementary functions fcn is executed with Tmodel objects

Defect controlled Predator-Prey

Figure 5: Order 14, tol $=10^{-8}$

Defect controlled predator-prey, zoom in

Figure 6: Order 14, tol $=10^{-8}$

Defect controlled Lorenz

Figure 7: Order 14, tol $=10^{-8}$

Defect controlled Lorenz, zoom in

Figure 8: Order 14, tol $=10^{-8}$

Accepted/rejected steps

- We can keep $\delta_{\max }$ below tol
- We need to keep it closer to tol
- Generally, we can have too many stepsize rejections

			Lorenz $t_{\text {end }}=20$		pred. prey $t_{\text {end }}=40$	
order	tol	acc	rej	acc	rej	
15	10^{-6}	356	79	80	23	
	10^{-8}	465	65	103	20	
	10^{-10}	612	25	135	15	
	10^{-12}	814	2	179	15	
20	10^{-6}	266	70	62	19	
	10^{-8}	325	80	76	22	
	10^{-10}	399	81	92	25	
	10^{-12}	508	57	114	28	

Conclusions

- Defect encapusulates all errors, well studied problem in IA
- RPA provides better bounds than IA for residual-based backward error analysis
- Given Taylor model arithmetic and RPA for sup-norm of polynomial, get sup-norm for real-valued function
- We can bound the defect rigorously and guarantee it is within tolerance
- We need to understand stepsize control better, construct a better one

