Implementing Rigorous Defect Control

John M. Ernsthausen

Joint work with Ned Nedialkov

McMaster University Canada

8th Taylor Model Workshop May 9-11, 2018

Problem statement

Given the initial-value problem (IVP)

 $x'(t) = f(t,(t)) \in \mathbb{R}^d$ $x(t_0) = x_0$ $[t_0, t_{end}]$ tol > 0

compute a piecewise polynomial approximate solution u

- ► continuously differentiable $t \in [t_0, t_{end}] \mapsto u(t) = (u_1(t), \dots, u_d(t)) \in \mathbb{R}^d$
- nearly satisfying the initial condition

Compute defect

 $\Delta u(t) = u'(t) - f(t, u(t)) \quad \Delta u(t_0) \stackrel{\text{def}}{=} u(t_0) - x_0$

Rigorous bound

 $\|\Delta u\|_{\infty} \stackrel{\text{def}}{=} \max_{i,t} |\Delta u_i(t)| \le ext{tol} \quad t \in [t_0, t_{ ext{end}}] \quad i = 1, \dots, d$

- Rigorous Polynomial Approximation (RPA)
- Taylor models (TM)
- Interval Arithmetic (IA)

Defect control literature

- Enright advocates asymptotic defect control Enright and Coworkers and Students (since 1989)
- Defect control and ODE boundary value problem Enright and Muir, Shampine and Muir (1993-2004)
- Corless and Corliss outlined rigorous defect control Corless and Corliss (1991)

Residual-based backward error analysis for ODE

Local residual-based backward error analysis for ODE Given

$$x'(t) = f(t, x(t)) \quad x(t_n) = x_n \quad \text{tol} > 0$$

compute approximate u on $[t_n, t_{n+1}]$ and compute defect

$$\Delta u(t) \stackrel{\text{\tiny def}}{=} u'(t) - f(t, u(t)) \quad \Delta u(t_n) \stackrel{\text{\tiny def}}{=} u(t_n) - x_n$$

Find stepsize so that *u* satisfies on $[t_n, t_{n+1}]$

$$u'(t) = f(t, u(t)) + \Delta u(t)$$
 $u(t_n) = x_n$ $\|\Delta u\|_{\infty} \le \text{tol}$

Then *u* exactly solves modified problem on $[t_0, t_{end}]$

$$u'(t) = f(t, u(t)) + \Delta u(t)$$
 $u(t_0) = x_0 + \Delta u(t_0)$ $\|\Delta u\|_{\infty} \le \text{tol}$

Outline

- Why defect control
- Approximate solution
- Our method
- Interval arithmetic evaluation
- **ODETS** software
- Results
- Conclusions

Backward error vs Forward error

Forward error

- Standard ODE-IVP solvers control local error on each step
 - Local error control can be deceived
 - No guarantee the global error is within some bounds
- Interval methods compute rigorous bounds on solution
 - hard to keep them tight

Backward error

- Compute exact solution to a modified problem Approximate solution solves exactly $u'(t) = f(t, u(t)) + \Delta u(t)$ The model is usually an approximation anyhow
- Monitor and control the maximum magnitude of the defect Asymptotically correct defect estimate (Enright) Guarantee ||∆u||_∞ ≤ tol

Why now is the right time for defect control

Approximate solution is true solution of modified problem Defect encaptulates all errors

Bounding real valued function Well-studied problem in interval analysis

Rigorous Polynomial Approximation (Joldes 2011) TM arithmetic in one independent variable Rigorous supremum norm of a polynomial

Approximate solution

Good numerical ODE solvers for the initial value problem

 $x'(t) = f(t, x(t)) \quad x(t_0) = x_0$

- control local error on each step
- return skeletal solution (t_n, x_n)
- return a continuously differentiable approximation u to x

Defect control (DC) methods

- monitor and control the maximum magnitude of the defect
- ► Asymptotic DC estimates ||∆u||_∞ by evaluating it at carefully selected points in each integration interval
- ▶ Rigorous DC ensures $||\Delta u(t)|| \le \text{tol on } [t_0, t_{end}]$

Taylor series method

Computation often regarded as expensive This is not the case

Computing defect inexpensive Compared to cost of Taylor series method itself

$$u(t) = \sum_{k=0}^{K} (u)_{k} (t - t_{i})^{k}$$
 where $(u)_{k} = \frac{1}{k} (f)_{k-1}$

Data management: ApproximateSolution class

Automatic differentiation via operator overloading

From *f* to its Computational Graph, a DAG Bendtsen and Stauning [FADBAD++, TADIFF] (1997)

Idea: Taylor arithmetic

- Assume user equations are elementary functions
- Construct an efficient computational graph
- Nodes (basic functions): sin, asin, sqrt, pow, log, exp
- Edges (basic operators): add, sub, mul, div, composition

Interface to TADIFF: TaylorExpansion class

Method to integrate ODE by time stepping

Given initial condition x_n at t_n and stepsize h_n , take a step to $t_{n+1} = t_n + h_n$

- Phase I. Compute an approximate polynomial solution floating-point arithmetic
- Phase II. Bound the defect Taylor models and interval arithmetic
- Phase III. Accept/reject step floating-point arithmetic

Phase I: Compute an approximate polynomial solution

(a) We use Taylor series:

$$u(t) = x_n + (x_n)_1(t-t_n) + \cdots + (x_n)_K(t-t_n)^K$$

- (x_n)_k are Taylor coefficients at t_n
- Computed using automatic differentiation and FADBAD++ Bendtsen and Stauning

(b) Evaluate $x_{n+1} = u(t_{n+1})$ and interpolate $f(t_{n+1}, x_{n+1})$:

$$U(t) = u(t) + \frac{\Delta u(t_{n+1})}{h_n^K} (t - t_n)^{K+1} - \frac{\Delta u(t_{n+1})}{h_n^{K+1}} (t - t_n)^{K+2}$$

This ensures $\Delta U(t_n) = \Delta U(t_{n+1}) = 0$

Phase II: Bound the defect

We use the SOLLYA package: RPA and sup-norm computation Chevillard, Joldes, Lauter

(a) Evaluate the code list of x' - f(t, x) with (U, [0, 0]) in TM arithmetic

• *i*th component of the result is (p_i, r_i) :

$$\Delta U_i(t) - p_i(t) \in \mathbf{r}_i$$
 for all $t \in [t_n, t_{n+1}]$

(b) Compute a rigorous enclosure $\boldsymbol{b}_i = [\underline{b}_i, \overline{b}_i]$:

$$\underline{b}_i \leq \sup_{t \in [t_n, t_{n+1}]} |p_i(t)| \leq \overline{b}_i$$

Then, on $[t_n, t_{n+1}]$,

 $\|\Delta U_i\|_{\infty} \leq \delta_i := \overline{b}_i + |\mathbf{r}_i|, \quad |\mathbf{r}_i| = \max\{|\underline{r}_i|, |\overline{r}_i|\}$

We ensure $\delta_i \leq \text{tol}$ for all $i = 1, \dots, d$

Example

Consider

$$x'(t) = f(t, x(t)) = x(t) - x(t)^{2}$$
 $x(0) = 0.2$

and

 $u(t) = 0.2 + 0.16t + 0.048t^2 + 1.0667 \times 10^{-3}t^3$ $[t_0, t_1] = [0, 0.4]$

First three coefficients exact; last rounded to 4 digits

Interpolating $f(t_1, u(t_1))$ (4 digits)

 $U(t) = v(t) + 1.5795 \times 10^{-2}t^4 - 3.9486 \times 10^{-2}t^5$

Evaluating $x' - (x - x^2)$ with (U, [0, 0]): $\Delta U(t) - p(t) \in r$ on [0, 0.4]

$$b(t) = 1.3878 \times 10^{-17}t + 10^{-10}t^2 + 7.7898 \times 10^{-2}t^3$$
$$- 2.0426 \times 10^{-1}t^4 + 2.8849 \times 10^{-2}t^5$$
$$t = [-5.1923 \times 10^{-5}, 1.8090 \times 10^{-17}]$$

Figure 1: Enclosures of $\Delta u(t)$ (blue) and $\Delta U(t)$ (red)

Phase III: Accept/reject step We use "elementary controller" (a) $\delta_{\max} = \max_i \delta_i$, $\|\Delta u_i\|_{\infty} \le \delta_i$ If $\delta_{\max} \le$ tol, accept step and predict

$$h_{n+1} = 0.9 h_n \left(\frac{0.5 \text{tol}}{\delta_{\text{max}}}\right)^{1/K}$$

K order of defect

(b) else reject step and recompute δ_{max} with

$$h_n \leftarrow h_n \left(\frac{0.25 \text{tol}}{\delta_{\max}} \right)^{1/k}$$

That is, repeat from Phase I(b)

• This involves evaluating x' - f(t, x) in TM arithmetic

Taylor coefficients are not recomputed

Example: defect controlled $x' = x - x^2$, x(0) = 0.2Figure 2: $t_{end} = 5$, order 15, tol = 10^{-10}

Example: defect controlled $x' = x - x^2$, x(0) = 0.2Figure 3: $t_{end} = 1000$, order 15, tol = 10^{-10}

Why not interval arithmetic (IA) evaluation?

- Because is not very good
- IA evaluation: replace reals by intervals and execute in IA
- IA operations

 $a \bullet b = \{ a \bullet b \mid a \in a, b \in b, and a \bullet b \text{ is defined} \}$

► Evaluating $\Delta u = u' - (u - u^2)$ in IA gives $u([0, 0.4]) \in u = [0.2000, 0.2722]$ $u'([0, 0.4]) \in u' = [0.1599, 0.2030]$

$$\Delta u \in \boldsymbol{u}' - (\boldsymbol{u} - \boldsymbol{u}^2) = [-0.0722, 0.0771]$$

- Inexpensive to compute but the width of [-0.0722, 0.0771] is 1.4917 × 10⁻¹ Bounds can blow up for complicated f's
- Width of r is 5.1923 × 10⁻⁵ TM keep bounds small

ODETS: Putting it all together

C++ implementation

- ODETS class implements the integration scheme
- User provides ODE function, e.g.

```
template <typename T>
void fcn( T t, const T * x, T * xp )
{
    xp[0] = x[0] - 0.1*x[0]*x[1] + 0.02*t;
    xp[1] = -x[1] + 0.02*x[0]*x[1] + 0.008*t;
}
```

- FADBAD++ uses fcn to generate computational graph
- Taylor coefficients are computed through FADBAD++
- Tmodel class interfaces SOLLYA and overloads arithmetic operators and elementary functions fcn is executed with Tmodel objects

Defect controlled Predator-Prey

Figure 5: Order 14, tol = 10^{-8}

Defect controlled predator-prey, zoom in

Figure 6: Order 14, tol = 10^{-8}

Defect controlled Lorenz

Figure 7: Order 14, tol = 10^{-8}

Defect controlled Lorenz, zoom in

Figure 8: Order 14, tol = 10^{-8}

Accepted/rejected steps

- We can keep δ_{max} below tol
- We need to keep it closer to tol
- Generally, we can have too many stepsize rejections

	Lorenz <i>t</i> _{end} = 20		pred. prey <i>t</i> _{end} = 40	
tol	acc	rej	acc	rej
10 ⁻⁶	356	79	80	23
10 ⁻⁸	465	65	103	20
10^{-10}	612	25	135	15
10 ⁻¹²	814	2	179	15
10 ⁻⁶	266	70	62	19
10 ⁻⁸	325	80	76	22
10^{-10}	399	81	92	25
10 ⁻¹²	508	57	114	28
	$ \begin{array}{r} 10^{-6} \\ 10^{-8} \\ 10^{-10} \\ 10^{-12} \\ 10^{-6} \\ 10^{-8} \\ 10^{-10} \\ \end{array} $	tol acc 10 ⁻⁶ 356 10 ⁻⁸ 465 10 ⁻¹⁰ 612 10 ⁻¹² 814 10 ⁻⁶ 266 10 ⁻⁸ 325 10 ⁻¹⁰ 399	tol acc rej 10 ⁻⁶ 356 79 10 ⁻⁸ 465 65 10 ⁻¹⁰ 612 25 10 ⁻¹² 814 2 10 ⁻⁶ 266 70 10 ⁻⁸ 325 80 10 ⁻¹⁰ 399 81	tolaccrejacc10^{-6}356798010^{-8}4656510310^{-10}6122513510^{-12}814217910^{-6}266706210^{-8}325807610^{-10}3998192

Conclusions

- Defect encapusulates all errors, well studied problem in IA
- RPA provides better bounds than IA for residual-based backward error analysis
- Given Taylor model arithmetic and RPA for sup-norm of polynomial, get sup-norm for real-valued function
- We can bound the defect rigorously and guarantee it is within tolerance
- We need to understand stepsize control better, construct a better one