
Implementing Rigorous Defect Control

John M. Ernsthausen
Joint work with Ned Nedialkov

McMaster University
Canada

8th Taylor Model Workshop
May 9-11, 2018

Problem statement
Given the initial-value problem (IVP)

x ′(t) = f
(
t , (t)

)
∈ Rd x(t0) = x0 [t0, tend] tol > 0

compute a piecewise polynomial approximate solution u
I continuously differentiable t ∈ [t0, tend] 7→ u(t) =

(
u1(t), . . . , ud (t)

)
∈ Rd

I nearly satisfying the initial condition

Compute defect

∆u(t) = u′(t)− f
(
t ,u(t)

)
∆u(t0)

def
= u(t0)− x0

Rigorous bound

‖∆u‖∞
def
= max

i,t
|∆ui(t)| ≤ tol t ∈ [t0, tend] i = 1, . . . ,d

I Rigorous Polynomial Approximation (RPA)
I Taylor models (TM)
I Interval Arithmetic (IA)

Defect control literature

I Enright advocates asymptotic defect control
Enright and Coworkers and Students (since 1989)

I Defect control and ODE boundary value problem
Enright and Muir, Shampine and Muir (1993-2004)

I Corless and Corliss outlined rigorous defect control
Corless and Corliss (1991)

Residual-based backward error analysis for ODE

Local residual-based backward error analysis for ODE
Given

x ′(t) = f
(
t , x(t)

)
x(tn) = xn tol > 0

compute approximate u on [tn, tn+1] and compute defect

∆u(t) def
= u′(t)− f

(
t ,u(t)

)
∆u(tn)

def
= u(tn)− xn

Find stepsize so that u satisfies on [tn, tn+1]

u′(t) = f
(
t ,u(t)

)
+∆u(t) u(tn) = xn ‖∆u‖∞ ≤ tol

Then u exactly solves modified problem on [t0, tend]

u′
(
t
)
= f
(
t ,u
(
t
))

+∆u
(
t
)

u
(
t0
)
= x0 + ∆u(t0) ‖∆u‖∞ ≤ tol

Outline

Why defect control

Approximate solution

Our method

Interval arithmetic evaluation

ODETS software

Results

Conclusions

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Backward error vs Forward error
Forward error
I Standard ODE-IVP solvers control local error on each step

I Local error control can be deceived
I No guarantee the global error is within some bounds

I Interval methods compute rigorous bounds on solution
I hard to keep them tight

Backward error
I Compute exact solution to a modified problem

Approximate solution solves exactly u′(t) = f
(
t , u(t)

)
+∆u(t)

The model is usually an approximation anyhow

I Monitor and control the maximum magnitude of the defect
Asymptotically correct defect estimate (Enright)
Guarantee ‖∆u‖∞ ≤ tol

7/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Why now is the right time for defect control

Approximate solution is true solution of modified problem
Defect encaptulates all errors

Bounding real valued function
Well-studied problem in interval analysis

Rigorous Polynomial Approximation (Joldes 2011)
TM arithmetic in one independent variable
Rigorous supremum norm of a polynomial

8/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Approximate solution
Good numerical ODE solvers for the initial value problem

x ′(t) = f
(
t , x(t)

)
x(t0) = x0

I control local error on each step
I return skeletal solution

(
tn, xn

)
I return a continuously differentiable approximation u to x

Defect control (DC) methods

I monitor and control the maximum magnitude of the defect
I Asymptotic DC estimates ‖∆u‖∞ by evaluating it at

carefully selected points in each integration interval
I Rigorous DC ensures ‖∆u(t)‖ ≤ tol on [t0, tend]

9/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Taylor series method

Computation often regarded as expensive
This is not the case

Computing defect inexpensive
Compared to cost of Taylor series method itself

u
(
t
)
=

K∑
k=0

(
u
)

k

(
t − ti

)k where
(
u
)

k =
1
k
(
f
)

k−1

Data management: ApproximateSolution class

10/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Automatic differentiation via operator overloading

From f to its Computational Graph, a DAG
Bendtsen and Stauning [FADBAD++, TADIFF] (1997)

Idea: Taylor arithmetic
I Assume user equations are elementary functions

I Construct an efficient computational graph

I Nodes (basic functions): sin, asin, sqrt, pow, log, exp

I Edges (basic operators): add, sub, mul, div, composition

Interface to TADIFF: TaylorExpansion class

11/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Method to integrate ODE by time stepping

Given initial condition xn at tn and stepsize hn, take a step to
tn+1 = tn + hn

Phase I. Compute an approximate polynomial solution
floating-point arithmetic

Phase II. Bound the defect
Taylor models and interval arithmetic

Phase III. Accept/reject step
floating-point arithmetic

12/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Phase I: Compute an approximate polynomial solution

(a) We use Taylor series:

u(t) = xn + (xn)1(t − tn) + · · ·+ (xn)K (t − tn)K ,

I (xn)k are Taylor coefficients at tn
I Computed using automatic differentiation and

FADBAD++ Bendtsen and Stauning

(b) Evaluate xn+1 = u(tn+1) and interpolate f (tn+1, xn+1):

U(t) = u(t) +
∆u(tn+1)

hK
n

(t − tn)K+1 − ∆u(tn+1)

hK+1
n

(t − tn)K+2

This ensures ∆U(tn) = ∆U(tn+1) = 0

13/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Phase II: Bound the defect
We use the SOLLYA package: RPA and sup-norm computation
Chevillard, Joldes, Lauter
(a) Evaluate the code list of x ′ − f (t , x) with

(
U, [0,0]

)
in TM

arithmetic
I i th component of the result is

(
pi , r i

)
:

∆Ui (t)− pi (t) ∈ r i for all t ∈ [tn, tn+1]

(b) Compute a rigorous enclosure bi = [bi , b̄i]:

bi ≤ sup
t∈[tn,tn+1]

|pi(t)| ≤ b̄i

Then, on [tn, tn+1],

‖∆Ui‖∞ ≤ δi := b̄i + |r i |, |r i | = max{|ri |, |ri |}
We ensure δi ≤ tol for all i = 1, . . . ,d

14/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Example
Consider

x ′
(
t
)
= f
(
t , x
(
t
))

= x
(
t
)
−x
(
t
)2 x

(
0
)
= 0.2

and

u
(
t
)
= 0.2 + 0.16t + 0.048t2 + 1.0667×10−3t3 [t0, t1] = [0,0.4]

First three coefficients exact; last rounded to 4 digits

Interpolating f
(
t1,u

(
t1
))

(4 digits)

U
(
t
)
= v

(
t
)
+1.5795×10−2t4 − 3.9486×10−2t5

Evaluating x ′ − (x − x2) with (U, [0,0]): ∆U(t)− p(t) ∈ r on [0,0.4]

p(t) = 1.3878×10−17t + 10−10t2 + 7.7898×10−2t3

− 2.0426×10−1t4 + 2.8849×10−2t5

r = [−5.1923×10−5,1.8090×10−17]
15/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Figure 1: Enclosures of ∆u(t) (blue) and ∆U(t) (red)

0 0.1 0.2 0.3 0.4
t

-2

0

2

4

6

8

10

12
10-4

16/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Phase III: Accept/reject step
We use “elementary controller”
(a) δmax = maxi δi , ‖∆ui‖∞ ≤ δi

If δmax ≤ tol, accept step and predict

hn+1 = 0.9hn

(
0.5tol
δmax

)1/K
K order of defect

(b) else reject step and recompute δmax with

hn ← hn

(
0.25tol
δmax

)1/K

I That is, repeat from Phase I(b)
I This involves evaluating x ′ − f (t , x) in TM arithmetic
I Taylor coefficients are not recomputed

17/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Example: defect controlled x ′ = x − x2, x(0) = 0.2
Figure 2: tend = 5, order 15, tol = 10−10

0 1 2 3 4 5

t

-1

-0.5

0

0.5

1

1.5
10

-12 solution error

0 1 2 3 4 5

t

0.6

0.65

0.7

0.75

0.8
stepsize

0 1 2 3 4 5

t

0.2

0.4

0.6

0.8

1
solution

0 1 2 3 4 5

t

-3

-2

-1

0

1

2
10

-11 defect bounds

18/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Example: defect controlled x ′ = x − x2, x(0) = 0.2
Figure 3: tend = 1000, order 15, tol = 10−10

0 200 400 600 800 1000

t

-4

-2

0

2

4

6
10

-11 solution error

0 200 400 600 800 1000

t

0

2

4

6

8

10
stepsize

0 200 400 600 800 1000

t

0.2

0.4

0.6

0.8

1
solution

0 200 400 600 800 1000

t

-1

0

1
10

-10 defect bounds

Figure 4: x ′ = x − x2, x(0) = 0.2, order 15, tol = 10−10

19/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Why not interval arithmetic (IA) evaluation?
I Because is not very good
I IA evaluation: replace reals by intervals and execute in IA
I IA operations

a • b = {a • b |a ∈ a, b ∈ b, and a • b is defined }
I Evaluating ∆u = u′ − (u − u2) in IA gives

u([0,0.4]) ∈ u = [0.2000,0.2722]

u′([0,0.4]) ∈ u′ = [0.1599,0.2030]

∆u ∈ u′ − (u − u2) = [−0.0722,0.0771]

I Inexpensive to compute but the width of [−0.0722,0.0771]
is 1.4917× 10−1

Bounds can blow up for complicated f ’s
I Width of r is 5.1923× 10−5

TM keep bounds small
20/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

ODETS: Putting it all together
C++ implementation
I ODETS class implements the integration scheme
I User provides ODE function, e.g.

template <typename T>
void fcn (T t , const T ∗ x , T ∗ xp)
{

xp [0] = x [0] − 0.1∗x [0] ∗ x [1] + 0.02∗ t ;
xp [1] = −x [1] + 0.02∗x [0] ∗ x [1] + 0.008∗ t ;

}

I FADBAD++ uses fcn to generate computational graph
I Taylor coefficients are computed through FADBAD++

I Tmodel class interfaces SOLLYA and overloads arithmetic
operators and elementary functions
fcn is executed with Tmodel objects

21/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Defect controlled Predator-Prey
Figure 5: Order 14, tol = 10−8

0 20 40

t

0

0.5

1
10

-8 max

0 20 40

t

0

0.2

0.4

0.6

0.8
stepsize

0 20 40

t

10
-14

10
-12

10
-10

10
-8

solution error

0 20 40

t

0

50

100

150
solution

22/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Defect controlled predator-prey, zoom in
Figure 6: Order 14, tol = 10−8

0 2 4 6

t

0

0.5

1
10

-8 max

0 2 4 6

t

0.2

0.4

0.6

0.8
stepsize

0 2 4 6

t

10
-14

10
-12

10
-10

10
-8

solution error

0 2 4 6

t

0

50

100

150
solution

23/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Defect controlled Lorenz
Figure 7: Order 14, tol = 10−8

0 10 20

0

0.5

1
10

-8 max

0 10 20

t

0

0.05

0.1
stepsize

0 10 20

t

10
-15

10
-10

10
-5

10
0

solution error

0 10 20

t

-50

0

50
solution

24/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Defect controlled Lorenz, zoom in
Figure 8: Order 14, tol = 10−8

0 0.5 1

0

0.5

1
10

-8 max

0 0.5 1

t

0.02

0.04

0.06

0.08
stepsize

0 0.5 1

t

10
-14

10
-12

10
-10

solution error

0 0.5 1

t

-20

0

20

40
solution

25/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Accepted/rejected steps
I We can keep δmax below tol
I We need to keep it closer to tol
I Generally, we can have too many stepsize rejections

Lorenz tend = 20 pred. prey tend = 40
order tol acc rej acc rej

15

10−6 356 79 80 23
10−8 465 65 103 20

10−10 612 25 135 15
10−12 814 2 179 15

20

10−6 266 70 62 19
10−8 325 80 76 22

10−10 399 81 92 25
10−12 508 57 114 28

26/27

Why defect control Approximate solution Our method Interval arithmetic evaluation ODETS software Results Conclusions

Conclusions

I Defect encapusulates all errors, well studied problem in IA

I RPA provides better bounds than IA for residual-based
backward error analysis

I Given Taylor model arithmetic and RPA for sup-norm of
polynomial, get sup-norm for real-valued function

I We can bound the defect rigorously and guarantee it is
within tolerance

I We need to understand stepsize control better, construct a
better one

27/27

	Why defect control
	Approximate solution
	Our method
	Interval arithmetic evaluation
	ODETS software
	Results
	Conclusions

