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Problem statement
Given the initial-value problem (IVP)

x ′(t) = f
(
t , (t)

)
∈ Rd x(t0) = x0 [t0, tend] tol > 0

compute a piecewise polynomial approximate solution u
I continuously differentiable t ∈ [t0, tend] 7→ u(t) =

(
u1(t), . . . , ud (t)

)
∈ Rd

I nearly satisfying the initial condition

Compute defect

∆u(t) = u′(t)− f
(
t ,u(t)

)
∆u(t0)

def
= u(t0)− x0

Rigorous bound

‖∆u‖∞
def
= max

i,t
|∆ui(t)| ≤ tol t ∈ [t0, tend] i = 1, . . . ,d

I Rigorous Polynomial Approximation (RPA)
I Taylor models (TM)
I Interval Arithmetic (IA)



Defect control literature

I Enright advocates asymptotic defect control
Enright and Coworkers and Students (since 1989)

I Defect control and ODE boundary value problem
Enright and Muir, Shampine and Muir (1993-2004)

I Corless and Corliss outlined rigorous defect control
Corless and Corliss (1991)



Residual-based backward error analysis for ODE



Local residual-based backward error analysis for ODE
Given

x ′(t) = f
(
t , x(t)

)
x(tn) = xn tol > 0

compute approximate u on [tn, tn+1] and compute defect

∆u(t) def
= u′(t)− f

(
t ,u(t)

)
∆u(tn)

def
= u(tn)− xn

Find stepsize so that u satisfies on [tn, tn+1]

u′(t) = f
(
t ,u(t)

)
+∆u(t) u(tn) = xn ‖∆u‖∞ ≤ tol

Then u exactly solves modified problem on [t0, tend]

u′
(
t
)
= f
(
t ,u
(
t
))

+∆u
(
t
)

u
(
t0
)
= x0 + ∆u(t0) ‖∆u‖∞ ≤ tol
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Backward error vs Forward error
Forward error
I Standard ODE-IVP solvers control local error on each step

I Local error control can be deceived
I No guarantee the global error is within some bounds

I Interval methods compute rigorous bounds on solution
I hard to keep them tight

Backward error
I Compute exact solution to a modified problem

Approximate solution solves exactly u′(t) = f
(
t , u(t)

)
+∆u(t)

The model is usually an approximation anyhow

I Monitor and control the maximum magnitude of the defect
Asymptotically correct defect estimate (Enright)
Guarantee ‖∆u‖∞ ≤ tol
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Why now is the right time for defect control

Approximate solution is true solution of modified problem
Defect encaptulates all errors

Bounding real valued function
Well-studied problem in interval analysis

Rigorous Polynomial Approximation (Joldes 2011)
TM arithmetic in one independent variable
Rigorous supremum norm of a polynomial
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Approximate solution
Good numerical ODE solvers for the initial value problem

x ′(t) = f
(
t , x(t)

)
x(t0) = x0

I control local error on each step
I return skeletal solution

(
tn, xn

)
I return a continuously differentiable approximation u to x

Defect control (DC) methods

I monitor and control the maximum magnitude of the defect
I Asymptotic DC estimates ‖∆u‖∞ by evaluating it at

carefully selected points in each integration interval
I Rigorous DC ensures ‖∆u(t)‖ ≤ tol on [t0, tend]
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Taylor series method

Computation often regarded as expensive
This is not the case

Computing defect inexpensive
Compared to cost of Taylor series method itself

u
(
t
)
=

K∑
k=0

(
u
)

k

(
t − ti

)k where
(
u
)

k =
1
k
(
f
)

k−1

Data management: ApproximateSolution class
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Automatic differentiation via operator overloading

From f to its Computational Graph, a DAG
Bendtsen and Stauning [FADBAD++, TADIFF ] (1997)

Idea: Taylor arithmetic
I Assume user equations are elementary functions

I Construct an efficient computational graph

I Nodes (basic functions): sin, asin, sqrt, pow, log, exp

I Edges (basic operators): add, sub, mul, div, composition

Interface to TADIFF: TaylorExpansion class
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Method to integrate ODE by time stepping

Given initial condition xn at tn and stepsize hn, take a step to
tn+1 = tn + hn

Phase I. Compute an approximate polynomial solution
floating-point arithmetic

Phase II. Bound the defect
Taylor models and interval arithmetic

Phase III. Accept/reject step
floating-point arithmetic
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Phase I: Compute an approximate polynomial solution

(a) We use Taylor series:

u(t) = xn + (xn)1(t − tn) + · · ·+ (xn)K (t − tn)K ,

I (xn)k are Taylor coefficients at tn
I Computed using automatic differentiation and

FADBAD++ Bendtsen and Stauning

(b) Evaluate xn+1 = u(tn+1) and interpolate f (tn+1, xn+1):

U(t) = u(t) +
∆u(tn+1)

hK
n

(t − tn)K+1 − ∆u(tn+1)

hK+1
n

(t − tn)K+2

This ensures ∆U(tn) = ∆U(tn+1) = 0
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Phase II: Bound the defect
We use the SOLLYA package: RPA and sup-norm computation
Chevillard, Joldes, Lauter
(a) Evaluate the code list of x ′ − f (t , x) with

(
U, [0,0]

)
in TM

arithmetic
I i th component of the result is

(
pi , r i

)
:

∆Ui (t)− pi (t) ∈ r i for all t ∈ [tn, tn+1]

(b) Compute a rigorous enclosure bi = [bi , b̄i ]:

bi ≤ sup
t∈[tn,tn+1]

|pi(t)| ≤ b̄i

Then, on [tn, tn+1],

‖∆Ui‖∞ ≤ δi := b̄i + |r i |, |r i | = max{|ri |, |ri |}
We ensure δi ≤ tol for all i = 1, . . . ,d
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Example
Consider

x ′
(
t
)
= f
(
t , x
(
t
))

= x
(
t
)
−x
(
t
)2 x

(
0
)
= 0.2

and

u
(
t
)
= 0.2 + 0.16t + 0.048t2 + 1.0667×10−3t3 [t0, t1] = [0,0.4]

First three coefficients exact; last rounded to 4 digits

Interpolating f
(
t1,u

(
t1
))

(4 digits)

U
(
t
)
= v

(
t
)
+1.5795×10−2t4 − 3.9486×10−2t5

Evaluating x ′ − (x − x2) with (U, [0,0]): ∆U(t)− p(t) ∈ r on [0,0.4]

p(t) = 1.3878×10−17t + 10−10t2 + 7.7898×10−2t3

− 2.0426×10−1t4 + 2.8849×10−2t5

r = [−5.1923×10−5,1.8090×10−17]
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Figure 1: Enclosures of ∆u(t) (blue) and ∆U(t) (red)
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Phase III: Accept/reject step
We use “elementary controller”
(a) δmax = maxi δi , ‖∆ui‖∞ ≤ δi

If δmax ≤ tol, accept step and predict

hn+1 = 0.9hn

(
0.5tol
δmax

)1/K
K order of defect

(b) else reject step and recompute δmax with

hn ← hn

(
0.25tol
δmax

)1/K

I That is, repeat from Phase I(b)
I This involves evaluating x ′ − f (t , x) in TM arithmetic
I Taylor coefficients are not recomputed
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Example: defect controlled x ′ = x − x2, x(0) = 0.2
Figure 2: tend = 5, order 15, tol = 10−10
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Example: defect controlled x ′ = x − x2, x(0) = 0.2
Figure 3: tend = 1000, order 15, tol = 10−10
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Figure 4: x ′ = x − x2, x(0) = 0.2, order 15, tol = 10−10
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Why not interval arithmetic (IA) evaluation?
I Because is not very good
I IA evaluation: replace reals by intervals and execute in IA
I IA operations

a • b = {a • b |a ∈ a, b ∈ b, and a • b is defined }
I Evaluating ∆u = u′ − (u − u2) in IA gives

u([0,0.4]) ∈ u = [0.2000,0.2722]

u′([0,0.4]) ∈ u′ = [0.1599,0.2030]

∆u ∈ u′ − (u − u2) = [−0.0722,0.0771]

I Inexpensive to compute but the width of [−0.0722,0.0771]
is 1.4917× 10−1

Bounds can blow up for complicated f ’s
I Width of r is 5.1923× 10−5

TM keep bounds small
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ODETS: Putting it all together
C++ implementation
I ODETS class implements the integration scheme
I User provides ODE function, e.g.

template <typename T>
void fcn ( T t , const T ∗ x , T ∗ xp )
{

xp [ 0 ] = x [ 0 ] − 0.1∗x [ 0 ] ∗ x [ 1 ] + 0.02∗ t ;
xp [ 1 ] = −x [ 1 ] + 0.02∗x [ 0 ] ∗ x [ 1 ] + 0.008∗ t ;

}

I FADBAD++ uses fcn to generate computational graph
I Taylor coefficients are computed through FADBAD++

I Tmodel class interfaces SOLLYA and overloads arithmetic
operators and elementary functions
fcn is executed with Tmodel objects
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Defect controlled Predator-Prey
Figure 5: Order 14, tol = 10−8
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Defect controlled predator-prey, zoom in
Figure 6: Order 14, tol = 10−8
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Defect controlled Lorenz
Figure 7: Order 14, tol = 10−8
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Defect controlled Lorenz, zoom in
Figure 8: Order 14, tol = 10−8
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Accepted/rejected steps
I We can keep δmax below tol
I We need to keep it closer to tol
I Generally, we can have too many stepsize rejections

Lorenz tend = 20 pred. prey tend = 40
order tol acc rej acc rej

15

10−6 356 79 80 23
10−8 465 65 103 20

10−10 612 25 135 15
10−12 814 2 179 15

20

10−6 266 70 62 19
10−8 325 80 76 22

10−10 399 81 92 25
10−12 508 57 114 28
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Conclusions

I Defect encapusulates all errors, well studied problem in IA

I RPA provides better bounds than IA for residual-based
backward error analysis

I Given Taylor model arithmetic and RPA for sup-norm of
polynomial, get sup-norm for real-valued function

I We can bound the defect rigorously and guarantee it is
within tolerance

I We need to understand stepsize control better, construct a
better one
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